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The Green function formalism is applied to the problem of grazing-incidence

small-angle X-ray scattering from statistically rough surfaces. Kirchhoff’s

integral equation is used to describe the X-ray wavefield propagation through

a single rough surface separating vacuum and medium. Taking into account

multiple diffuse X-ray scattering effects, the reflection Rcoh(�) and transmission

Tcoh(�) coefficients of the specular wave are obtained using the Gaussian

statistical model of rough surfaces in terms of the two-point height–height

correlation function. In the limiting cases when the correlation length � is equal

to zero or infinity, analytical formulae for the reflection Rcoh(�) and transmission

Tcoh(�) coefficients of the specular wave are obtained. It is important that in

the case �!1 they coincide with the corresponding reflection RDW(�) and

transmission TDW(�) coefficients related to the conventional Debye–Waller

approximation for describing the grazing X-ray scattering from a rough surface.

In the case of finite values of correlation length � the reflection |Rcoh(�)|2 and

transmission |Tcoh(�)|2 scans are numerically calculated.

1. Introduction

Over the last 20 years the scattering of short-wavelength

radiation from rough surfaces and/or interfaces has been the

object of a number of works [see, for example, Sinha et al.

(1988), Holy et al. (1999), Bushuev et al. (2002), Nosik (2002),

Lazzari (2002), Lomov et al. (2005), Sutyrin & Prokhorov

(2006), Bridou et al. (2006), Hodroj et al. (2006), Schmidbauer

et al. (2008), Zozulya et al. (2008) and Chukhovskii (2009); also

the pioneering works of Yoneda (1963), Nevot & Croce (1980)

and Petrashen’ et al. (1983)].

Indeed, many experimental and theoretical studies of X-ray

scattering from multilayer structures (MLSs) with rough

surfaces and interfaces using the high-resolution X-ray

reflectometry (HRXR) technique to date have been reported

(Lomov et al., 2005; Bridou et al., 2006; Bushuev et al., 2002;

Sutyrin & Prokhorov, 2006; Chukhovskii, 2009). Most of them

have been analyzed in terms of ‘Debye–Waller factors’, which

modify the conventional Fresnel coefficients allowing the root-

mean-square (r.m.s.) interface roughness � to be deduced

from the experimental HRXR angular scan data jR expð�Þj2,

where � is the grazing angle of the X-ray incidence.

At the same time, as was pointed out by Sinha and co-

authors (Sinha et al., 1988), the diffuse X-ray scattering is

notably significant for describing the X-ray specular reflection

and transmission and it is directly associated with the two-

point height–height correlation function K2ðjxj=�Þ for statis-

tically rough surfaces. The two-point height–height correlation

function K2ðjxj=�Þ is defined provided that K2ðjxj=�Þjx¼0 = 1

and K2ðjxj=�Þjjxj = 0, the vector x � x1 � x2 is directed along

the averaged flat surface, and � is the correlation length.

Specifically, an estimate of the multiple diffuse X-ray

scattering is essential if it concerns the quantative analysis

of the HRXR scan data jR expð�Þj2 to retrieve the macroscopic

MLS parameters, including the surface and interface rough-

ness.

In this paper we are dealing with the reflection and trans-

mission phenomena of the specular wave in the case of

grazing-incidence small-angle X-ray scattering from statisti-

cally rough surfaces. A new theoretical approach is proposed.

It is based on the Green function formalism using Kirchhoff’s

integral equation for describing the X-ray wavefield propa-

gation through a random rough surface separating vacuum

and medium.

In x2, Kirchhoff’s integral equations for the reflected and

transmitted wavefield amplitudes are derived as a compound

part of the Green function formalism to obtain their rigorous

solutions in the form of expansion series.

In x3, the general solutions for the reflection and trans-

mission coefficients of the specular wave are obtained by use

of the Gaussian statistical model describing a rough surface

in terms of the two-point surface height–height correlation



function and taking into account multiple diffuse X-ray scat-

tering effects.

In x4 the reflection and transmission angular scans are

numerically calculated for different correlation lengths �. A

homogeneous medium is characterized by the complex elec-

tric susceptibility � (up to a factor of 4�). In the case under

consideration the X-ray wavelength � is of the order of 0.1 nm,

the complex value � � Reð�Þ þ i Imð�Þ, Reð�Þ < 0 and Imð�Þ
> 0, Reð�Þ ’ �10�5 and Imð�Þ ’ 0:05jReð�Þj are assumed.

Special attention is paid for comparison of the calculated

reflection jR cohð�Þj2 and transmission jT cohð�Þj2 scans versus

the incidence angle � with the corresponding ones related to

the conventional Debye–Waller approximation (cf. de Boer,

1994, 1995; Kohn, 2003).

As is known, the retrieval of the surface and/or interface

roughness from the experimental HRXR data is based on the

Debye–Waller approximation for the reflection and trans-

mission coefficients of the specular wave. The latter are the

conventional Fresnel coefficients multiplied by the corre-

sponding Debye–Waller factors (see, for example, Kohn, 2003;

Chukhovskii, 2009).

The Fresnel coefficients modified by the Debye–Waller

factors have some validity, even when rough surfaces do not

approach a conventional model but instead approach the

Gaussian statistical model based on the two-point height–

height correlation function. While there are similarities with

the conventional approach, there arises an essential differ-

ence: at large incidence angles, � > �Cr = jReð�Þj1=2, the

smallness of the diffuse X-ray scattering is no longer a valid

assumption (Sinha et al., 1988). We shall show that multiple

diffuse X-ray scattering effects are not negligible and notably

influence the reflection and transmission coefficients of the

specular wave especially outside the total reflection angle

region, � > �Cr.

2. Theoretical foundation for describing the grazing
X-ray wavefield propagation through a rough surface

Let the incident plane wave E0ðrÞ = expðik0rÞ impinge on a

single rough surface that separates vacuum and medium (the

incident plane-wavefield amplitude is assumed to be equal to

unity, k0 is the incident wavevector, jk0j = k, where k is the

wavenumber in a vacuum).

As a key point for proceeding further in the description of

the grazing X-ray specular scattering we shall adopt the

surface Kirchhoff’s integral equation that describes the scalar

electric wavefield EðrÞ within a single surface-confined

medium, namely,

E rð Þ ¼
R

d2x �E rS

� �
rrS

G r; rS

� �
þG r; rS

� �
rrS

E rS

� �h i
nS:

ð1aÞ

Herein, the Green (the spherical point-source wave) function

in a medium is equal to

G r; rS

� �
¼
�1

4�

exp i� r� rS

�� ��� �
r� rS

�� �� : ð1bÞ

The radius vector r determines the observation point in the

medium. The radius vector rS determines a single rough

surface, which has associated with it a random smooth one, rS =

xþ hðxÞ, the vector x is along the average flat surface, hðxÞ =

hðxÞn0, n0 is the internal unit vector normal to the average flat

surface, x � hðxÞ = 0 (Fig. 1). hðxÞ is the height of the rough

surface at point x, the height function hðxÞ is assumed to be

single-valued. nS = n0 þ ½hðxÞ=xx�ex þ ½hðxÞ=xy�ey is the

internal vector normal to a rough surface at point rS and unit

vectors ex and ey are directed along the x and z axes.

�ðr� rSÞ=jr� rSj is the wavevector of the spherical point-

source wave in a medium, �2 = k2ð1þ �Þ. Noteworthy is the

fact that the integration in (1) is carried out over the plane

r � ðx; 0Þ (the average flat surface).

The incident plane wave E0ðrÞ initiates the transmitted wave

EtranðrÞ = T expðijrÞ [cf. equation (1a)] in a medium and the

reflected wave EreflðrÞ = R expðikreflrÞ in a vacuum. The

reflected wave EreflðrÞ and transmitted wave EtranðrÞ as func-

tions of the radius vector r are pseudo-plane waves and mainly

depend on the exponential plane-wave factors expðikreflrÞ and

expðijrÞ, where krefl and j are the wavevector of the mirror-

reflected and the transmitted plane waves for the case of the

average flat surface, z = 0. In other words, krefl � n0 =

�k0 � n0 � �k0z, jkreflj = jk0j and j � n0 = k0 � n0, j2 = �2.

To be specific, the reflection RðrÞ and transmission TðrÞ

amplitudes can be distinguished from the reflected EreflðrÞ and

transmitted EtranðrÞ waves. Thus, as a result of the wavefield

continuity along a surface, they are linked to each other as

follows,

T xþ h xð Þ½ � exp i�zh xð Þ
� �

¼ exp ik0zh xð Þ
� �

þ R xþ h xð Þ½ � exp �ik0zh xð Þ
� �

; ð2Þ

where the z component of the wavevector j of the transmitted

wave in a medium, z > 0, is equal to

�z ¼ jn0 ¼ k2
0z þ �k2

� �1=2
:

Using equations (1) and (2) for the wavefield at any point

r ¼ xþ hðxÞ, one obtains the integral equation for the

reflected wave amplitude,
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Figure 1
Rough surface schematic. The coordinate z is directed along the internal
normal to the averaged flat surface z = 0. hðxÞ is the height of a rough
surface at point x.



R xþ h xð Þ½ � ¼ � exp 2ik0zh xð Þ
� �

þ
R

exp �ik0 � x� x1ð Þ
� �

�

�
rrG x� x1 þ h xð Þ � h x1ð Þ

� ��
þ ik0G x� x1 þ h xð Þ � h x1ð Þ

� �	
� nx1

exp ik0z h xð Þ þ h x1ð Þ
� �� 	

þ rrG x� x1 þ h xð Þ � h x1ð Þ
� ��

þ ikreflG x� x1 þ h xð Þ � h x1ð Þ
� �	

� nx1
exp ik0z h xð Þ � h x1ð Þ

� �� 	
� R x1 þ h x1ð Þ

� �

d2x1: ð3Þ

In deriving (3) we have utilized the fact that a gradient of the

reflected wave amplitude R½xþ hðxÞ� can be neglected in

comparison with a gradient of the exponential phase factor

expðikreflrÞ.

Further, the following substitution is utilized,

R xþ h xð Þ½ � ¼ � exp 2ik0zh xð Þ
� �

þ ~RR xþ h xð Þ½ �; ð4Þ

where the ‘shifted’ reflection coefficient ~RR½xþ hðxÞ� satisfies

the following equation (nx1
’ n0),

~RR xþ h xð Þ½ � ¼ 2ik0z

R
exp �ik0 � x� x1ð Þ

� �
�G x� x1 þ h xð Þ � h x1ð Þ

� �
� exp ik0z h xð Þ þ h x1ð Þ

� �� 	
d2x1

þ
R

exp �ik0 � x� x1ð Þ
� �

�

n
rrS

G x� x1 þ h xð Þ � h x1ð Þ
� �

� ik0G x� x1 þ h xð Þ � h x1ð Þ
� �o

� n0 exp ik0z h xð Þ � h x1ð Þ
� �� 	

� ~RR x1 þ h x1ð Þ
� �

d2x1: ð5aÞ

Taking (2) into account, equation (5a) can be easily trans-

formed to the integral equation for the transmitted wave

amplitude, namely

T xþ h xð Þ½ � ¼ 2ik0z

R
exp �ik0 � x� x1ð Þ

� �
�G x� x1 þ h xð Þ � h x1ð Þ

� �
� exp i ��zh xð Þ þ k0zh x1ð Þ

� �� 	
d2x1

þ
R

exp �ik0 � x� x1ð Þ
� �

�

n
rrS

G x� x1 þ h xð Þ � h x1ð Þ
� �

� ik0G x� x1 þ h xð Þ � h x1ð Þ
� �o

� n0 exp �i�z h xð Þ � h x1ð Þ
� �� 	

� T x1 þ h x1ð Þ
� �

d2x1: ð5bÞ

To solve equations (5a) and (5b) one applies the sequential

iteration procedure. In its frame the formal rigorous solutions

can be expanded in series as

~RR rS

� �
¼
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�refl rS; rS;1

� �
þ
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�refl rS; rS;1

� �
�
R

d2x2 exp �ik0 � x1 � x2ð Þ
� �

�refl rS;1; rS;2

� �
þ
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�refl rS; rS;1

� �
�
R

d2x2 exp �ik0 � x1 � x2ð Þ
� �

�refl rS;1; rS;2

� �
�
R

d2x3 exp �ik0 � x2 � x3ð Þ
� �

�refl rS;2; rS;3

� �
þ . . .ð6aÞ

and

T rS

� �
¼
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�tran rS; rS;1

� �
þ
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�tran rS; rS;1

� �
�
R

d2x2 exp �ik0 � x1 � x2ð Þ
� �

�tran rS;1; rS;2

� �
þ
R

d2x1 exp �ik0 � x� x1ð Þ
� �

�tran rS; rS;1

� �
�
R

d2x2 exp �ik0 � x1 � x2ð Þ
� �

�tran rS;1; rS;2

� �
�
R

d2x3 exp �ik0 � x2 � x3ð Þ
� �

�tran rS;2; rS;3

� �
þ . . . ;

ð6bÞ

where the functions �ðrS;n�1; rS;nÞ and �ðrS;n�1; rS;nÞ are

defined by (n = 1, 2, 3, . . . , rS;0 � rS)

�refl rS;n�1; rS;n

� �
¼ 2ik0z exp ik0z h xn�1ð Þ þ h xnð Þ

� �� 	
�G xn�1 � xn þ h xn�1ð Þ � h xnð Þ

� �
;

�refl rS;n�1; rS;n

� �
¼ exp ik0z h xn�1ð Þ � h xnð Þ

� �� 	
�

n
rrS;n�1

G xn�1 � xn þ h xn�1ð Þ � h xnð Þ
� �

� ik0G xn�1 � xn þ h xn�1ð Þ � h xnð Þ
� �o

n0

ð7aÞ

and

�tran rS;n�1; rS;n

� �
¼ 2iðk0 � n0Þ exp i ��h xn�1ð Þ þ k0zh xnð Þ

� �� 	
�G xn�1 � xn þ h xn�1ð Þ � h xnð Þ

� �
;

�tran rS;n�1; rS;n

� �
¼ exp �i� h xn�1ð Þ � h xnð Þ

� �� 	
�

n
rrS;n�1

G xn�1 � xn þ h xn�1ð Þ � h xnð Þ
� �

� ik0G xn�1 � xn þ h xn�1ð Þ � h xnð Þ
� �o

n0:

ð7bÞ

It should be mentioned that each n-order term within the

expansion series (6a), (6b) for obtaining the wave amplitudes
~RRðrSÞ, TðrSÞ is related to the multiple n-order re-emergence of

the spherical point-source waves along a rough surface.

To describe the grazing-incidence small-angle X-ray

specular scattering from statistically rough surfaces, one needs

to move from the wave amplitude solutions (6a), (6b) to

the reflection ~RR coh = h ~RR½xþ hðxÞ�i and transmission T coh =

hT½xþ hðxÞ�i coefficients, where the notation h. . .i means a

statistical average of the wave amplitudes.

It follows from some physical speculations that the two-

point height–height correlation function

K2 jx� sj=�ð Þ ¼
hðxÞhðsÞ
� �

h2ðxÞ
� �1=2

h2ðsÞ
� �1=2
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is of great importance for deriving the coefficients R coh

and T coh.

Then, we assume that the two-point surface height–height

combinations of ½hðxÞ � hðsÞ� are statistically independent

Gaussian random variables. The statistical averages of the

two-point height–height combinations ½hðxÞ � hðsÞ�2 take the

form (see, for example, Sinha et al., 1988)

h xð Þ � h sð Þ½ �
2

� �
¼ 2�2 1� K2 x� sj j=�ð Þ

� �
; ð8Þ

where the r.m.s. surface roughness � and correlation length �
are introduced.

Note that in the computer simulations below we shall

assume that the coordinate dependence of the correlation

function K2(x) has the exponential form K2ðxÞ = expð�xÞ. At

the same time, the statistical model of independent height–

height combinations allows us to find the basic solutions for

reflection ~RR coh and transmission T coh coefficients.

Correspondingly, after straightforward calculations one can

obtain

~RR coh ffi

R
d2s exp �ik0 � x� sð Þ

� �
� coh

refl x� sj jð Þ

1�
R

d2s exp �ik0 � x� sð Þ
� �

� coh
refl x� sj jð Þ

ð9Þ

and

T coh ffi

R
d2s exp �ik0 x� sð Þ

� �
� coh

tran x� sj jð Þ

1�
R

d2s exp �ik0 x� sð Þ
� �

� coh
tran x� sj jð Þ

: ð10Þ

Herein, the average functions � cohðjx� sjÞ and � cohðjx� sjÞ

involved in (9) and (10) are defined as follows,

� coh
refl x� sj jð Þ ¼ �refl xþ h xð Þ; sþ h sð Þ½ �

� �
;

� coh
refl x� sj jð Þ ¼ �refl xþ h xð Þ; sþ h sð Þ½ �

� � ð11Þ

and

� coh
tran x� sj jð Þ ¼ �tran xþ h xð Þ; sþ h sð Þ½ �

� �
;

� coh
tran x� sj jð Þ ¼ �tran xþ h xð Þ; sþ h sð Þ½ �

� �
:

ð12Þ

Evaluating the average functions (11) and (12) is a starting

point for proceeding further in the description of the grazing

X-ray specular scattering from statistically rough surfaces.

3. Reflection Rcoh and transmission Tcoh coefficients:
the statistical model of a rough surface based on the
two-point height–height correlation function

To calculate the reflection R coh and transmission T coh coeffi-

cients we will apply the two-dimensional Fourier transform of

the spherical point-source wavefunction GðjrjÞ in a medium

[cf. equation (1b)],

GðrÞ ¼ �
i

8�2

Z
d2p

exp i p � xþ i �2 � p2ð Þ
1=2
jzj

h i
�2 � p2ð Þ

1=2
: ð13Þ

Substituting the Fourier transform (13) into equations (9)–

(12) and performing straightforward calculations, the reflec-

tion R coh and transmission T coh coefficients can be cast in the

form

R coh
¼ � exp 2ik0zh xð Þ

� �� �
þ

� coh
refl

1�� coh
refl

; ð14Þ

T coh
¼

� coh
tran

1�� coh
tran

; ð15Þ

where the coefficients � coh
refl, � coh

refl , � coh
tran and � coh

tran involved in

(14) and (15) are properly determined by

� coh
refl ¼

1

4�2

Z
d2s

Z
d2p

k0z exp i k0 � pð Þ � s� uð Þ
� �
�2 � p2ð Þ

1=2

�

D
exp

n
i �2
� p2

� �1=2
hðuÞ � hðsÞ
�� ��

þ ik0z h uð Þ þ h sð Þ½ �

oE
; ð16aÞ

� coh
refl ¼

"!þ0

1

8�2

Z
d2s

Z
d2p

� Sign "þ h uð Þ � h sð Þ½ � �
k0z

�2 � p2ð Þ
1=2

 �
� exp i k0 � pð Þ � s� uð Þ

� �
�

D
exp

n
i �2
� p2

� �1=2
hðuÞ � hðsÞ
�� ��

þ ik0z h uð Þ � h sð Þ½ �

oE
; ð16bÞ

and

� coh
tran ¼

1

4�2

Z
d2s

Z
d2p

k0z exp i k0 � pð Þ � s� uð Þ
� �
�2 � p2ð Þ

1=2

� exp
n

i �2
� p2

� �1=2
hðuÞ � hðsÞ
�� ��D

þ i ��zh uð Þ þ k0zh sð Þ
� �oE

; ð17aÞ

� coh
tran ¼

"!þ0

1

8�2

Z
d2s

Z
d2p

� Sign "þ h uð Þ � h sð Þ½ � �
k0z

�2 � p2ð Þ
1=2

 �
� exp i k0 � pð Þ � s� uð Þ

� �
� exp

n
i �2
� p2

� �1=2
hðuÞ � hðsÞ
�� ��D

� i�z h uð Þ � hð sð Þ½ �

oE
: ð17bÞ

Before proceeding further, a few additional comments are

appropriate concerning some of the theoretical aspects of

implementing the theoretical approach presented here.

Firstly, to ensure the correct values of the reflection and

transmission coefficients in the case of the ideally flat surface

z = 0, in this case a random height function hðxÞ � 0, the

parameter "!þ0 is introduced [see formulae (16b) and

(17b), " can be put equal to the X-ray wavelength � without

losing its physical sense].

Then, in the case of hðxÞ = 0, equations (16) and (17)

directly yield

� coh
refl ¼ � coh

tran ¼
k0z

�z
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and

� coh
refl � � coh

tran ¼
1

2

�z � k0z

�z

:

For this, according to (14) and (15) the reflection and trans-

mission coefficients become the conventional Fresnel reflec-

tion and transmission ones, namely

R coh ¼ R Fres �
k0z � �z

�z þ k0z

and

T coh ¼ T Fres �
2k0z

�z þ k0z

:

Secondly, in the limit case of correlation length �!1,

formulae (14)–(17) yield, provided that the r.m.s surface

roughness � 6¼ 0,

R coh
¼ fRR Fres

and

T coh
¼ fTT Fres;

where the Debye–Waller factors fR = expð�2k2
0z�

2Þ and fT =

exp½�ðk0z � �zÞ
2=2�2�. As mentioned above, the Debye–

Waller approximations for the reflection R coh and transmis-

sion T coh coefficients are widely used for quantative analysis

of the HRXR scan data jRexpð�Þj2 (see, for example, de Boer,

1994, 1995; Kohn, 2003; Chukhovskii, 2009).

Thirdly, it is notably important that the architecture of the

general equations (14)–(17) is linked to the influence of

multiple diffuse X-ray scattering effects upon the reflection

and transmission coefficients of the specular wave.

It is clear from the physical viewpoint that the Debye–

Waller approximation does work well at small angles � 
 �Cr ,

at least, and in particular, in the case of correlation lengths

� � l, where l is the X-ray absorption length in a medium, l =

�/[2�Im(�)].

It is noteworthy that at large incidence angles � > �Cr the

multiple diffuse X-ray scattering effects notably influence the

reflection and transmission coefficients of the specular wave

depending on the finite value of the correlation length �. It can

be a priori stated that such an influence should increase

(decrease) with increasing (decreasing) r.m.s. roughness �.

4. Gaussian statistical model of a rough surface based
on the two-point height–height correlation function:
results and discussion

Applying the Gaussian statistical model via the two-point

height–height correlation function (8) allows us to explicitly

carry out an averaging procedure of terms involved on the

right-hand sides of integrals (16) and (17).

Indeed, introducing the ‘combined’ r.m.s. roughness

�2ðju� sjÞ � �½1� K2ðju� sj=�Þ�1=2 to avoid bulky formulae,

the straightforward calculations for such averages yield [cf.

equations (16)–(17)]

exp 2ik0zh uð Þ
� �� �

¼ exp �2k2
oz�

2
� �

;

exp
n

i �2
� p2

� �1=2
hðuÞ � hðsÞ
�� ��þ ik0z h uð Þ þ h sð Þ½ �

oD E
¼ exp �2k2

0z�
2

� �
exp � �2

� p2
þ k2

0z

� �
�2

2 u� sj jð Þ
� �

� Erfc �i�2 u� sj jð Þ �2
� p2

� �1=2
h i

; ð18aÞ

D
Sign "þ hðuÞ � hðsÞ½ � exp

n
i �2
� p2

� �1=2
h uð Þ � h sð Þ
�� ��

þ ik0z h uð Þ � h sð Þ½ �

oE
¼

1

2
exp ��2

2 u� sj jð Þ �2
� p2

� �1=2
þ k0z

h i2
 ��

�Erfc �
"

2�2 u� sj jð Þ
� i�2 u� sj jð Þ �2

� p2
� �1=2

þ k0z

h i �

� exp ��2
2 u� sj jð Þ �2

� p2
� �1=2

� k0z

h i2
 �

�Erfc
"

2�2 u� sj jð Þ
� i�2 u� sj jð Þ �2

� p2
� �1=2

� k0z

h i ��
ð18bÞ

and

exp i �2
� p2

� �1=2
h uð Þ � h sð Þ
�� ��þ i ��zh uð Þ þ k0zh sð Þ

� �n oD E

¼ exp �
�2 �z � koz

� �2

2

" #
exp �

�2
2 u� sj jð Þ �z � koz

� �2

4

" #

�
1

2
exp ��2

2 u� sj jð Þ �2
� p2

� �1=2
�

k0z þ �z

2

� �2
( ) 

�Erfc �i�2 u� sj jð Þ �2
� p2

� �1=2
�

k0z þ �z

2

� � �

þ exp ��2
2 u� sj jð Þ �2

� p2
� �1=2

þ
k0z þ �z

2

� �2
( )

�Erfc �i�2 u� sj jð Þ �2
� p2

� �1=2
þ

k0z þ �z

2

� � ��
;

ð19aÞ

Sign "þ h uð Þ � h sð Þ½ � exp
n

i �2
� p2

� �1=2
h uð Þ � h sð Þ
�� ��D

� i�z h uð Þ � h sð Þ½ �

oE
¼

1

2
exp ��2

2 u� sj jð Þ �2
� p2

� �1=2
� �z

h i2
 ��

� Erfc �
"

2�2 u� sj jð Þ
� i�2 u� sj jð Þ �2

� p2
� �1=2

� �z

h i �

� exp ��2
2 u� sj jð Þ �2

� p2
� �1=2

þ �z

h i2
 �

� Erfc
"

2�2 u� sj jð Þ
� i�2 u� sj jð Þ �2

� p2
� �1=2

þ �z

h i ��
:

ð19bÞ

Herein there is the complementary error function ErfcðzÞ for

complex z on the right-hand sides of averages (18) and (19).

In the next step towards obtaining the reflection and

transmission coefficients, these averages have to be substi-

tuted into (16) and (17).
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Moving from the momentum component variable px to the

variable q = px � k0x within the mirror-scattering plane and

neglecting the quadratic terms of p2
x, p2

y and of the term

ð�2 � p2Þ
1=2 involved in (16)–(19), we obtain ultimately

� coh
refl ¼

exp �2k2
0z�

2
� �
�

R1
�1

dq
R1
0

dx

�
k0z exp k2

0z�
2
2ðxÞ

� �
cosðqxÞ

�2
z � 2k0tq

� �1=2

� exp ��2
2ðxÞ �

2
z � 2k0tq

� �� �
� Erfc �i�2ðxÞ �

2
z � 2k0xq

� �1=2
h i

; ð20aÞ

� coh
refl ¼

1

4�

R1
�1

dq
R1
0

dx cosðqxÞ

�

"
exp ��2

2ðxÞ �2
z � 2k0tq

� �1=2
þ k0z

h i2
 �

� Erfc �
"

2�2ðxÞ
� i�2ðxÞ �2

z � 2k0tq
� �1=2

þ k0z

h i �

� exp ��2
2ðxÞ �2

z � 2k0tq
� �1=2

� k0z

h i2
 �

� Erfc
"

2�2ðxÞ
� i�2ðxÞ �2

z � 2k0tq
� �1=2

� k0z

h i �

�
k0z

�2
z � 2k0tq

� �1=2

 
exp ��2

2ðxÞ �2
z � 2k0tq

� �1=2
þ k0z

h i2
 �

�Erfc �i�2ðxÞ �2
z � 2k0tq

� �1=2
þ k0z

h in o
þ exp ��2

2ðxÞ �2
z � 2k0tq

� �1=2
� k0z

h i2
 �

� Erfc �i�2ðxÞ �2
z � 2k0tq

� �1=2
� k0z

h in o!#
ð20bÞ

and

� coh
tran ¼

exp ��2 �z � k0z

� �2
=2

h i
2�
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dq
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0

dx

�

k0z exp �2
2 xð Þ �z � k0z

� �2
=4

h i
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�2
z � 2k0tq

� �1=2
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exp ��2

2 xð Þ �2
z � 2k0tq

� �1=2
�
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2

� �2
( )

� Erfc �i�2 xð Þ �2
z � 2k0tq

� �1=2
�

k0z þ �z

2

� � �

þ exp ��2
2 xð Þ �2

z � 2k0tq
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þ
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2

� � �2
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z � 2k0tq
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þ
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� � �!
; ð21aÞ

� coh
tran ¼

1

4�

R1
�1

dq
R1
0

dx cos qxð Þ

�

"
exp ��2

2ðxÞ �2
z � 2k0tq

� �1=2
� �z

h i2
 �

� Erfc �
"

2�2ðxÞ
� i�2ðxÞ �2

z � 2k0tq
� �1=2

� �z

h i �

� exp ��2
2ðxÞ �2

z � 2k0tq
� �1=2

þ �z

h i2
 �

� Erfc
"

2�2ðxÞ
� i�2ðxÞ �2

z � 2k0tq
� �1=2

þ �z

h i �

�
k0z
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z � 2k0tq
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exp ��2

2ðxÞ �2
z � 2k0tq

� �1=2
� �z

h i2
 �

� Erfc �i�2ðxÞ �2
z � 2k0tq

� �1=2
� �z

h in o
þ exp ��2

2ðxÞ �2
z � 2k0tq
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h i2
 �

� Erfc �i�2ðxÞ �2
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: ð21bÞ

The general formulae (20) and (21) obtained for the coeffi-

cients � coh
refl, � coh

refl , � coh
tran and � coh

tran complete the mathematical

foundation for evaluating the reflection R coh and transmission

T coh coefficients of the specular wave [cf. equations (14)

and (15)].

Loosely speaking, the key ideas of the present theoretical

approach are based on two major physical prerequisites. One

of them is that implementing Kirchhoff’s integral equation [cf.

(1)] along with the Green function formalism [cf (6), (7)] for

describing the grazing X-ray scattering from a rough surface is

very important. Another is that applying the rough-surface

model (8) seems to be very effective for providing the statis-

tical average of the rigorous solutions for the reflected and

transmitted wave amplitudes in the form of expansion series

(6)–(7).

As follows from formulae (14)–(15) and (20)–(21), in the

limiting case of correlation length �!1 they provide the

reflection R coh and transmission T coh coefficients in the form

of the conventional Fresnel coefficients R Fres and T Fres

multiplied by the Debye–Waller factors fR = expð�2�2k2
0zÞ and

fT = exp½��2ðk0z � �zÞ
2=2�, respectively.

For the opposite case, in the extreme case when the

correlation length � = 0, formulae (20) and (21) yield solutions

for the reflection and transmission coefficients in the analytical

form

R coh
�¼0 ¼ � exp �2�2k2

oz

� �
þ

� coh
refl;�¼0

1�� coh
refl;�¼0

; ð22Þ

where the coefficients � coh
refl;�¼0 and � coh

refl;�¼0 are equal to

� coh
refl;&¼0 ¼ exp ��2�2

z

� �
k0z=�z

� �
Erfc �i�z�

� �
;
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� coh
refl;&¼0 ¼

1

4

n
exp ��2 �z þ k0z

� �2
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"
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o
and
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�¼0 ¼
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where the coefficients � coh
tran;�¼0, � coh

tranl;�¼0 are equal to
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tran;�¼0 ¼
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exp �
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þ exp �
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� �
2
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1
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Erfc
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� 
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� �
Erfc

"
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� 
n
�

k0z

�z

1þ exp �4�2�2
z

� �
Erfc �2i��z

� �� ��
;

respectively.

In the case of finite correlation lengths � the numerical run-

through for calculating the reflection jR cohð�Þj2 and transmis-

sion jT cohð�Þj2 scans versus the X-ray incidence angle � is

carried out and based on the theoretical formulae (14), (15),

(20)–(21).

Before proceeding further, a simple analysis shows that the

integrands in integrals (20) and (21) essentially depend on the

‘combined’ r.m.s. roughness �2ðxÞ. It does mean that, up to a

certain extent, increasing (decreasing) the r.m.s. roughness � is

equivalent to decreasing (increasing) the correlation length �.
In the general case the following parameters are used for

the numerical run-through of the reflection and transmission

scans as functions of the X-ray incidence angle �. Namely, (i)

the complex electric susceptibility of a medium � equal to

�10�5ð1� 0; 05iÞ, (ii) the r.m.s. roughness � measured in units

of �=2�, (iii) the correlation length � measured in units of the

X-ray absorption length l = �/[2�Im(�)] = 2 � 106�=2� in a

medium, (iv) the X-ray incidence angle � plotted in units of

0.009�, and a �f g array size equal to 60.

Based on the theoretical formulae (14), (15) and (20)–(21)

the scans of � lnðjR cohð�Þj2Þ and jT cohð�Þj2 were numerically

calculated for the different parameter values: the correlation

length �f g array = l{0, 1, 100} and the r.m.s. roughness �f g array

= �=2� {25, 65, 85}.

As an example, the numerical run-through reflection and

transmission scan data are depicted in Figs. 2(a), 2(b) and 2(c)

for � ln½jR cohð�Þj2� and in Figs. 3(a), 3(b) and 3(c) for

jT cohð�Þj2. The r.m.s. roughness � is chosen to be equal to

65ð�=2�Þ and the correlation length � divided by l is sequen-

tially equal to (a) = 100, (b) = 1 and (c) = 0.
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Figure 2
The numerically calculated reflectance � ln½jR cohð�Þj2� scans (stars). The
dimensionless correlation length �=l is equal to (a) 100, (b) 1, (c) 0, where
l is the X-ray absorption length in the medium, l = �/[2� Im(�)]. The r.m.s.
roughness � is equal to 65ð�=2�Þ. The reflectance � ln jRDWð�Þj2 scans
related to the Debye–Waller approximation are drawn with full lines
(with points) as well.



Note that the logarithmic scale of the reflection angular

scans,� ln½jR cohð�Þj2�, along the ordinates is chosen in order to

reveal their behavior outside the total reflection angular

region, � > �Cr.

To be specific, the numerical run-through of the

� ln½jR cohð�Þj2� and jT cohð�Þj2 scans depicted in Figs. 2 and 3

clearly show that multiple diffuse X-ray scattering effects

notably influence the reflection and transmission coefficients

of the specular wave at large incidence angles, � > �Cr, outside

the total X-ray reflection region, and they drastically become

stronger with reducing correlation length � 
 l [see Figs. 2(b)

and 2(c) and Figs. 3(b) and 3(c)].

5. Concluding remarks

The goal of our study was to consider the grazing X-ray

specular scattering from rough surfaces based on the Green

function formalism. For this, Kirchhoff’s integral equation (1)

allows us to describe the wavefield propagation within a single

surface-confined medium and it is adjusted with the Gaussian

statistical model of a rough surface using the two-point

height–height roughness correlation function.

The reflection R cohð�Þ and transmission T cohð�Þ coefficients

of the specular wave have been obtained by the present

theoretical approach. This allows us to take into account the

multiple diffuse X-ray scattering effects and then to reveal

their influence upon grazing X-ray specular scattering from

statistically rough surfaces. Presumably an ensemble of

random surface heights described in the frame of Gaussian

statistics may be a good model of a real solid rough surface (cf.

Sinha et al., 1988).

The reflection jR cohð�Þj2 and transmission jT cohð�Þj2 scans

are numerically calculated for finite correlation lengths �.
It is shown that multiple diffuse X-ray scattering effects lead

to the re-emergence of the X-ray specular wave, at least at

large incidence angles, � > �Cr, outside the total reflection

region.

The influence of multiple diffuse scattering effects upon the

grazing X-ray specular scattering is essential for the correla-

tion lengths � that are of the order of, and/or less than, the

X-ray absorption length in a medium l.

On the other hand, it should be mentioned that the general

formulae (14)–(15) and (20)–(21) for calculating the reflection

jR cohð�Þj2 and transmission jT cohð�Þj2 scans might be useful

for obtaining information about the two-point height–height

correlation functions of real rough surfaces.

Of greater interest may be future studies in terms of justi-

fying the present theoretical approach for deriving the

reflection and transmission coefficients of the specular wave

by use of the statistical cumulant average technique (see, for

example, Poliakov et al., 1991). At the same time, imple-

menting high-resolution diffuse scattering (Lazzari, 2002)

offers a new possibility to probe surfaces and/or interfaces

produced by various growth processes and then examining

their roughness characteristics on a length scale of the order of

the correlation length �.

The authors would like to thank V. L. Nosik and S. V.

Salikhov for useful discussions and comments.
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